Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Pentylcyclohexyl)phenol

He-Fang Wang,^a* Yong Guo,^b Chang-Qing Jin^a and Hong-Bing Le^b

^aSchool of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, People's Republic of China, and ^bCNOOC Tianjin Research and Design Institute of Chemical Industry, Tianjin 300131, People's Republic of China Correspondence e-mail: whf0618@163.com

Received 19 June 2009; accepted 23 June 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.056; wR factor = 0.151; data-to-parameter ratio = 16.6.

In the title compound, $C_{17}H_{26}O$, the cyclohexyl ring adopts a chair conformation with the C-atom substituents in equatorial sites. The H atom of the O-H group is disordered over two positions of equal occupancy. In the crystal, O-H···O hydrogen bonds lead to [010] chains.

Related literature

For a related structure, see: Wang et al. (2006). For applications of phenol derivatives, see: Eidenschink et al. (1978); Hu et al. (2003).

Experimental

Crystal data

C ₁₇ H ₂₆ O	V = 1441.2 (5) Å ³
$M_r = 246.38$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 21.002 (4) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 5.3281 (11) Å	T = 113 K
c = 13.389 (3) Å	$0.24 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 105.87 \ (3)^{\circ}$	
c = 13.389 (3) A $\beta = 105.87 (3)^{\circ}$	$0.24 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.984, T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	
$wR(F^2) = 0.151$	
S = 1.11	
2827 reflections	
170 parameters	
2 restraints	

$R_{\rm int} = 0.040$ H atoms treated by a mixture of

10687 measured reflections

2827 independent reflections

2314 reflections with $I > 2\sigma(I)$

independent and constrained refinement $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$01 - H1B \cdots O1^{i}$ $01 - H1A \cdots O1^{ii}$	0.84 (2) 0.87 (2)	2.06 (2) 1.99 (2)	2.886 (2) 2.836 (2)	170 (4) 165 (4)
Summatry and as (i)	x 1 y m (;;) v 1 v	1 -	

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5011).

References

Eidenschink, R., Krause, J. & Pohl, L. (1978). US Patent No. 4 130 502.

- Hu, B. H., Xia, Y. T., Zhou, Y. B., Meng, F. M., Chen, X. & Fu, W. G. (2003). Chinese Patent No. 1 463 961.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, H.-F., Guo, Y., Zhang, H., Zeng, T. & Li, H.-B. (2006). Acta Cryst. E62, o3721-o3722.

supplementary materials

Acta Cryst. (2009). E65, o1717 [doi:10.1107/S1600536809024027]

4-(4-Pentylcyclohexyl)phenol

H.-F. Wang, Y. Guo, C.-Q. Jin and H.-B. Le

Comment

For a related structure, see Wang *et al.* (2006); for uses of phenol derivatives, see Eidenschink *et al.*, 1978; Hu *et al.*, 2003). In the title compound, (I), the H atom of O—H bond was found disordered in two orientation. The crystal structure is stabilized by O—H…O hydrogen bonds (Table 1).

Refinement

The H atoms of O—H were located in a difference map and their positions were freely refined. All H other atoms were positioned geometrically and refined using a riding model, in the range of 0.93–0.98 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Only one orientation of the O—H group is shown.

4-(4-Pentylcyclohexyl)phenol

Crystal data $C_{17}H_{26}O$ $M_r = 246.38$ Monoclinic, $P2_{1/c}$ Hall symbol: -P 2ybc a = 21.002 (4) Å b = 5.3281 (11) Å c = 13.389 (3) Å $\beta = 105.87$ (3)° V = 1441.2 (5) Å³ Z = 4

 $F_{000} = 544$ $D_x = 1.136 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3895 reflections $\theta = 1.6-27.9^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 113 KBlock, colourless $0.24 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Rigaku Saturn CCD diffractometer	2827 independent reflections
Radiation source: rotating anode	2314 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.040$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
<i>T</i> = 113 K	$\theta_{\min} = 2.0^{\circ}$
ω and ϕ scans	$h = -25 \rightarrow 22$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -6 \rightarrow 6$
$T_{\min} = 0.984, T_{\max} = 0.993$	$l = -16 \rightarrow 15$
10687 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0738P)^2 + 0.2552P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\text{max}} = 0.001$
2827 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
170 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.48580 (6)	0.2525 (2)	0.02646 (9)	0.0245 (3)	
H1A	0.4889 (19)	0.399 (5)	-0.001 (3)	0.037*	0.50

H1B	0.4982 (19)	0.107 (5)	0.01	8 (3)	0.037*	0.50
C1	0.41419 (7)	0.0832 (3)	0.23	796 (11)	0.0186 (3)	
H1	0.4178	-0.0466	0.28	78	0.022*	
C2	0.45317 (7)	0.0725 (3)	0.16	908 (11)	0.0195 (3)	
H2	0.4833	-0.0621	0.17	23	0.023*	
C3	0.44742 (7)	0.2600 (3)	0.09	596 (11)	0.0189 (3)	
C4	0.40401 (7)	0.4582 (3)	0.09	173 (11)	0.0199 (4)	
H4	0.4006	0.5876	0.04	17	0.024*	
C5	0.36564 (7)	0.4663 (3)	0.16	100 (11)	0.0197 (4)	
Н5	0.3357	0.6018	0.15	76	0.024*	
C6	0.36995 (7)	0.2801 (3)	0.23	555 (11)	0.0180 (3)	
C7	0.32602 (7)	0.2816 (3)	0.30	842 (11)	0.0183 (4)	
H7	0.3429	0.1491	0.36	21	0.022*	
C8	0.32710 (7)	0.5321 (3)	0.36	579 (11)	0.0205 (4)	
H8A	0.3729	0.5679	0.40	74	0.025*	
H8B	0.3132	0.6685	0.31	42	0.025*	
С9	0.28151 (7)	0.5298 (3)	0.43	741 (11)	0.0211 (4)	
H9A	0.2820	0.6977	0.46	94	0.025*	
H9B	0.2985	0.4070	0.49	39	0.025*	
C10	0.20997 (7)	0.4612 (3)	0.37	901 (11)	0.0196 (4)	
H10	0.1929	0.5933	0.32	53	0.024*	
C11	0.20944 (8)	0.2107 (3)	0.32	292 (12)	0.0215 (4)	
H11A	0.2240	0.0759	0.37	51	0.026*	
H11B	0.1636	0.1722	0.28	20	0.026*	
C12	0.25437 (7)	0.2132 (3)	0.25	071 (12)	0.0208 (4)	
H12A	0.2372	0.3362	0.19	44	0.025*	
H12B	0.2536	0.0455	0.21	86	0.025*	
C13	0.16400 (8)	0.4506 (3)	0.44	966 (12)	0.0227 (4)	
H13A	0.1214	0.3758	0.41	01	0.027*	
H13B	0.1838	0.3369	0.50	84	0.027*	
C14	0.14968 (8)	0.7019 (3)	0.49	357 (12)	0.0238 (4)	
H14A	0.1917	0.7737	0.53	66	0.029*	
H14B	0.1315	0.8191	0.43	54	0.029*	
C15	0.10106 (8)	0.6811 (3)	0.55	919 (12)	0.0258 (4)	
H15A	0.0596	0.6038	0.51	67	0.031*	
H15B	0.1200	0.5676	0.61	84	0.031*	
C16	0.08453 (8)	0.9309 (3)	0.60	091 (13)	0.0273 (4)	
H16A	0.1262	1.0150	0.63	86	0.033*	
H16B	0.0621	1.0395	0.54	17	0.033*	
C17	0.04046 (9)	0.9051 (4)	0.67	340 (14)	0.0402 (5)	
H17A	-0.0006	0.8194	0.63	71	0.060*	
H17B	0.0301	1.0721	0.69	53	0.060*	
H17C	0.0635	0.8071	0.73	45	0.060*	
Atomic displace	ement parameters	(\mathring{A}^2)				
	- U ¹¹	1/22	1/33	<i>U</i> ¹²	<i>t</i> /13	1 123
01	0.0299 (7)	0.0234 (6)	0.0256 (7)	0.0001 (5)	0.0169 (5)	-0.0007(5)

supplementary materials

C1	0.0216 (8)	0.0165 (7)	0.0183 (8)	-0.0007 (6)	0.0064 (6)	0.0006 (6)
C2	0.0201 (7)	0.0172 (7)	0.0217 (8)	0.0017 (6)	0.0065 (6)	-0.0008 (6)
C3	0.0194 (8)	0.0214 (8)	0.0168 (8)	-0.0025 (6)	0.0066 (6)	-0.0024 (6)
C4	0.0239 (8)	0.0181 (7)	0.0172 (8)	-0.0014 (6)	0.0051 (6)	0.0009 (6)
C5	0.0223 (8)	0.0174 (7)	0.0196 (8)	0.0027 (6)	0.0059 (6)	-0.0005 (6)
C6	0.0194 (8)	0.0189 (8)	0.0152 (8)	-0.0010 (6)	0.0038 (6)	-0.0020 (6)
C7	0.0204 (8)	0.0183 (8)	0.0170 (8)	0.0013 (6)	0.0063 (6)	0.0015 (6)
C8	0.0206 (8)	0.0209 (8)	0.0205 (8)	-0.0013 (6)	0.0066 (6)	-0.0026 (6)
C9	0.0226 (8)	0.0220 (8)	0.0200 (8)	0.0013 (6)	0.0083 (7)	-0.0022 (6)
C10	0.0223 (8)	0.0192 (8)	0.0183 (8)	0.0000 (6)	0.0074 (6)	0.0010 (6)
C11	0.0222 (8)	0.0217 (8)	0.0218 (8)	-0.0030 (6)	0.0081 (7)	-0.0015 (6)
C12	0.0237 (8)	0.0189 (8)	0.0210 (8)	-0.0009 (6)	0.0079 (7)	-0.0017 (6)
C13	0.0246 (8)	0.0229 (8)	0.0230 (8)	-0.0007 (6)	0.0105 (7)	0.0006 (6)
C14	0.0248 (8)	0.0254 (9)	0.0240 (9)	-0.0008 (6)	0.0112 (7)	-0.0006 (6)
C15	0.0282 (9)	0.0278 (9)	0.0249 (9)	0.0001 (7)	0.0134 (7)	0.0007 (7)
C16	0.0257 (9)	0.0326 (10)	0.0260 (9)	-0.0005 (7)	0.0112 (7)	-0.0052 (7)
C17	0.0337 (10)	0.0584 (13)	0.0346 (11)	-0.0006 (9)	0.0193 (9)	-0.0108 (9)

Geometric parameters (Å, °)

O1—C3	1.3883 (17)	C10—C13	1.5264 (19)
O1—H1A	0.87 (2)	C10-C11	1.530 (2)
O1—H1B	0.84 (2)	C10—H10	1.0000
C1—C2	1.3918 (19)	C11—C12	1.5245 (19)
C1—C6	1.396 (2)	C11—H11A	0.9900
C1—H1	0.9500	C11—H11B	0.9900
C2—C3	1.381 (2)	C12—H12A	0.9900
C2—H2	0.9500	C12—H12B	0.9900
C3—C4	1.386 (2)	C13—C14	1.525 (2)
C4—C5	1.3856 (19)	C13—H13A	0.9900
C4—H4	0.9500	C13—H13B	0.9900
C5—C6	1.393 (2)	C14—C15	1.5222 (19)
С5—Н5	0.9500	C14—H14A	0.9900
C6—C7	1.5151 (19)	C14—H14B	0.9900
C7—C12	1.536 (2)	C15—C16	1.520 (2)
С7—С8	1.5373 (19)	C15—H15A	0.9900
С7—Н7	1.0000	C15—H15B	0.9900
C8—C9	1.5291 (19)	C16—C17	1.520 (2)
C8—H8A	0.9900	C16—H16A	0.9900
C8—H8B	0.9900	C16—H16B	0.9900
C9—C10	1.536 (2)	C17—H17A	0.9800
С9—Н9А	0.9900	С17—Н17В	0.9800
С9—Н9В	0.9900	С17—Н17С	0.9800
C3—O1—H1A	112 (3)	С9—С10—Н10	107.9
C3—O1—H1B	112 (3)	C12—C11—C10	112.39 (12)
H1A—O1—H1B	135 (4)	C12-C11-H11A	109.1
C2—C1—C6	121.60 (13)	C10-C11-H11A	109.1
C2—C1—H1	119.2	C12—C11—H11B	109.1
C6—C1—H1	119.2	C10-C11-H11B	109.1

C3—C2—C1	119.14 (13)	H11A—C11—H11B	107.9
C3—C2—H2	120.4	C11—C12—C7	111.98 (12)
C1—C2—H2	120.4	C11—C12—H12A	109.2
C2—C3—C4	120.62 (14)	C7—C12—H12A	109.2
C2—C3—O1	120.02 (13)	C11—C12—H12B	109.2
C4—C3—O1	119.36 (13)	C7—C12—H12B	109.2
C5—C4—C3	119.51 (13)	H12A—C12—H12B	107.9
С5—С4—Н4	120.2	C14—C13—C10	115.56 (12)
C3—C4—H4	120.2	C14—C13—H13A	108.4
C4—C5—C6	121.46 (13)	C10-C13-H13A	108.4
С4—С5—Н5	119.3	C14—C13—H13B	108.4
С6—С5—Н5	119.3	С10—С13—Н13В	108.4
C5—C6—C1	117.67 (13)	H13A—C13—H13B	107.5
C5—C6—C7	121.73 (13)	C15—C14—C13	113.12 (13)
C1—C6—C7	120.52 (13)	C15—C14—H14A	109.0
C6—C7—C12	111.11 (11)	C13—C14—H14A	109.0
C6—C7—C8	113.45 (12)	C15—C14—H14B	109.0
C12—C7—C8	109.63 (12)	C13—C14—H14B	109.0
С6—С7—Н7	107.5	H14A—C14—H14B	107.8
С12—С7—Н7	107.5	C16—C15—C14	113.88 (13)
С8—С7—Н7	107.5	C16—C15—H15A	108.8
C9—C8—C7	112.35 (12)	C14—C15—H15A	108.8
C9—C8—H8A	109.1	C16—C15—H15B	108.8
С7—С8—Н8А	109.1	C14—C15—H15B	108.8
С9—С8—Н8В	109.1	H15A—C15—H15B	107.7
С7—С8—Н8В	109.1	C17—C16—C15	113.29 (14)
H8A—C8—H8B	107.9	C17—C16—H16A	108.9
C8—C9—C10	112.06 (12)	C15—C16—H16A	108.9
С8—С9—Н9А	109.2	C17—C16—H16B	108.9
С10—С9—Н9А	109.2	C15—C16—H16B	108.9
С8—С9—Н9В	109.2	H16A—C16—H16B	107.7
С10—С9—Н9В	109.2	С16—С17—Н17А	109.5
Н9А—С9—Н9В	107.9	С16—С17—Н17В	109.5
C13-C10-C11	110.54 (12)	H17A—C17—H17B	109.5
C13—C10—C9	112.94 (12)	С16—С17—Н17С	109.5
С11—С10—С9	109.41 (12)	H17A—C17—H17C	109.5
С13—С10—Н10	107.9	H17B—C17—H17C	109.5
С11—С10—Н10	107.9		
C6—C1—C2—C3	-0.6 (2)	C12—C7—C8—C9	54.21 (15)
C1—C2—C3—C4	0.8 (2)	C7—C8—C9—C10	-55.74 (16)
C1—C2—C3—O1	-179.92 (12)	C8—C9—C10—C13	178.39 (12)
C2—C3—C4—C5	-0.7 (2)	C8—C9—C10—C11	54.80 (16)
O1—C3—C4—C5	-179.99 (12)	C13—C10—C11—C12	179.57 (12)
C3—C4—C5—C6	0.4 (2)	C9-C10-C11-C12	-55.45 (16)
C4—C5—C6—C1	-0.3 (2)	C10-C11-C12-C7	56.67 (16)
C4—C5—C6—C7	-177.26 (13)	C6—C7—C12—C11	179.35 (11)
C2—C1—C6—C5	0.4 (2)	C8—C7—C12—C11	-54.44 (15)
C2—C1—C6—C7	177.41 (13)	C11-C10-C13-C14	-168.57 (13)
C5—C6—C7—C12	72.10 (17)	C9—C10—C13—C14	68.48 (17)

supplementary materials

C1—C6—C7—C12 C5—C6—C7—C8 C1—C6—C7—C8 C6—C7—C8—C9	-104.78 (16) -51.96 (18) 131.16 (14) 179.08 (12)	C10—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C17	177. -17. -17.	28 (12) 8.21 (14) 5.27 (14)
Hydrogen-bond geometry (Å, °)				
D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1B···O1 ⁱ	0.84 (2)	2.06 (2)	2.886 (2)	170 (4)
O1—H1A···O1 ⁱⁱ	0.87 (2)	1.99 (2)	2.836 (2)	165 (4)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+1, -*y*+1, -*z*.

